

Pharmacokinetics (PK), Safety and Efficacy of Bictegravir/Emtricitabine/Tenofovir Alafenamide (B/F/TAF) in Virologically Suppressed Pregnant Women With HIV

Haeyoung Zhang,¹ Hal Martin,¹ Ludwig Lin,¹ Maggie Davis,¹ Hailin Huang,¹ Deqing Xiao,¹ Priyanka Arora,¹ Anchalee Avihingsanon,² Ellen Koenig,³ Ramesh Palaparthy,¹ Sandhya Girish,¹ <u>Dhananjay Marathe¹</u>

¹Gilead Sciences, Inc., Foster City, California, U.S.A.; ²HIV-NAT Thai Red Cross AIDS Research Centre, Bangkok, Thailand; ³Dominican Institute of Virological Studies – IDEV, Santiago, Dominican Republic

IAS 2023, the 12th IAS Conference on HIV Science 23–26 July 2023 Brisbane, Australia

All Author Disclosures

Dhananjay Marathe (presenting author)

Gilead Sciences: Employment and restricted stocks

The potential effects of relevant financial relationship with ineligible company have been mitigated

Haeyoung Zhang, Hal Martin, Ludwig Lin, Maggie Davis, Hailin Huang, Deqing Xiao, Priyanka Arora, Ramesh Palaparthy and Sandhya Girish

Gilead Sciences: Employment and restricted stocks

The potential effects of relevant financial relationship with ineligible company have been mitigated

Anchalee Avihingsanon

- Gilead Sciences: Speaker honoraria and research grants
- GSK: Research grants
- MSD: Research grants
- Viatris: Speaker honoraria and research grants
- ViiV Healthcare: Speaker honoraria and research grants

The potential effects of relevant financial relationship with ineligible company have been mitigated

Ellen Koenig

Gilead Sciences: Study investigator

The potential effects of relevant financial relationship with ineligible company have been mitigated

Introduction

- B/F/TAF is approved for treatment in people with HIV-1 (PWH)
- Limited data exist on B/F/TAF PK, safety and efficacy during pregnancy

순

- Bictegravir (BIC) is highly protein bound and metabolized by UGT1A1 and CYP3A4
- Increased activities of CYP3A4 and UGT1A1, along with alterations in protein binding and other physiological changes, have been reported in pregnancy

- To evaluate PK, safety and efficacy of B/F/TAF in pregnancy, a dedicated study was conducted
 - Open-label study (NCT03960645) in 33 pregnant women living with HIV-1
 - All participants were virologically suppressed at study start (HIV-1 RNA < 50 c/mL)

Primary Objective:

 Evaluate steady-state PK of BIC and confirm dose of B/F/TAF (50/200/25 mg FDC once daily) in the second and third trimesters of pregnancy

Secondary Objectives:

- Evaluate steady-state PK of FTC and TAF
- Assess maintenance of HIV-1 virologic suppression during the second and/or third trimesters of pregnancy

Study Design and Sampling Method

*Study inclusion criteria: aged \geq 18 to < 40 years, documented VL < 50 c/mL for \geq 6 months, on stable ART for \geq 6 months, no documented or suspected resistance to any component of FTC, TFV or INSTIs, GFR \geq 90 mL/min; †Exploratory endpoint. ART, antiretroviral therapy; AUC_{tau}, area under the plasma drug concentration versus time curve over the dosing interval; B/F/TAF, bictegravir/emtricitabine/tenofovir alafenamide; BIC, bictegravir; c, copies; C_{max}, maximum observed plasma drug concentration; C_{trough}, trough concentration; FTC, emtricitabine; GFR, glomerular filtration rate; GLSM, geometric least-squares mean; INSTI, integrase strand transfer inhibitor; M = E, missing = excluded; PBMC, peripheral blood mononuclear cell; PK, pharmacokinetic; TAF, tenofovir alafenamide; TFV, tenofovir; TFV-DP, tenofovir diphosphate (active metabolite); VL, viral load; VS, virologically suppressed

Pharmacokinetics of BIC: Plasma Concentration–Time Profiles

- Concentrations were lower during pregnancy vs. postpartum, but similar within each period (second vs. third trimester; 6 vs. 12 weeks)
- Individual C_{trough} values were > IQ1 in all participants across each of the four periods except in one participant* during the second trimester; median C_{trough} was 6.9- and 6.0-fold of IQ1 during the second and third trimesters, respectively

*Participant on calcium and iron supplements, FTC and TAF exposures in typical population range (> median) at second trimester; the same participant had > 9-fold BIC exposure in third vs. second trimester (i.e., ~ 4.8-fold IQ1). B/F/TAF, bictegravir/emtricitabine/tenofovir alafenamide; BIC, bictegravir; C_{trough}, trough concentration; FTC, emtricitabine; IQ1, inhibitory quotient at protein-adjusted 95% effective concentration; SD, standard deviation; TAF, tenofovir alafenamide

Pharmacokinetics of BIC

Parameter Mean (%CV)	Second trimester (n = 21)	Third trimester (n = 30)	Week 6 postpartum (n = 31)	Week 12 postpartum (n = 32)	Third trimester vs. Week 12 postpartum (%GLSM ratio [90% Cl])	Pregnancy vs. postpartum (%GLSM ratio)
Total AUC _{tau} , h∙µg/mL	62.8 (32.2)	60.2 (29.1)	135 (26.9)	148 (28.5)	40.6 (36.8, 44.8)	41.2, 44.7
Unbound AUC _{tau} , h∙µg/mL	0.224 (42.0)	0.219 (33.9)	0.354 (34.2)	0.374 (32.2)	58.8 (52.7, 65.7)	59.7, 62.4
C _{max} , μg/mL	5.82 (30.1)	5.37 (25.9)	9.77 (23.3)	11.0 (24.9)	48.2 (43.0, 53.9)	
C _{trough} , μg/mL	1.05 (45.2)	1.07 (41.7)	3.53 (38.4)	3.64 (34.1)	29.0 (25.7, 32.7)	

- Compared with 12 weeks postpartum, total and unbound BIC AUC_{tau} during the third trimester were lower by ~59% and ~41%, respectively
- In concordance with the current study data, IMPAACT data presented at CROI 2023 showed that total BIC exposure was lower in pregnancy vs. postpartum, while all BIC C_{trough} values were > IQ1¹

%CV, percentage coefficient of variation; AUC_{tau}, area under the plasma drug concentration versus time curve over the dosing interval; BIC, bictegravir; C_{max}, maximum observed plasma concentration of drug; C_{trough}, trough concentration; GLSM, geometric least-squares mean; IQ1, inhibitory quotient at protein-adjusted 95% effective concentration

1. Powis KM, et al. CROI 2023, Poster 783. Pharmacokinetics And Virologic Outcomes Of Bictegravir In Pregnancy And Postpartum - CROI Conference (accessed June 22, 2023)

Pharmacokinetics of BIC

Parameter Mean (%CV)	Second trimester (n = 21)	Third trimester (n = 30)	Week 6 postpartum (n = 31)	Week 12 postpartum (n = 32)	Non-pregnant adult PWH (n = 1193) ^{1,2}
Total AUC _{tau} , h∙µg/mL	62.8 (32.2)	60.2 (29.1)	135 (26.9)	148 (28.5)	102 (26.9)
Unbound AUC _{tau} , h∙µg/mL	0.224 (42.0)	0.219 (33.9)	0.354 (34.2)	0.374 (32.2)	-
C _{max} , μg/mL	5.82 (30.1)	5.37 (25.9)	9.77 (23.3)	11.0 (24.9)	6.15 (22.9)
C _{trough} , μg/mL	1.05 (45.2)	1.07 (41.7)	3.53 (38.4)	3.64 (34.1)	2.61 (35.2)

• Exposure levels in pregnancy are closer to those in non-pregnant adults

 Mean total BIC AUC_{tau} in the third trimester was ~41% lower than values reported in non-pregnant adult PWH¹

%CV, percentage coefficient of variation; AUC_{tau}, area under the plasma drug concentration versus time curve over the dosing interval; BIC, bictegravir; C_{max}, maximum observed plasma concentration of drug; C_{trough}, trough concentration; IQ1, inhibitory quotient at protein-adjusted 95% effective concentration; PWH, people with HIV-1. 1. Biktarvy USPI. <u>https://www.gilead.com/-/media/files/pdfs/medicines/hiv/biktarvy/b</u>

Pharmacokinetics of FTC and TAF

- Plasma FTC exposures were lower during pregnancy compared with postpartum;
 %GLSM ratio for AUC_{tau} ranged from 64.3% to 69.2%
- Plasma TAF exposures were lower during pregnancy compared with postpartum;
 %GLSM ratio for total AUC_{tau} ranged from 56.5% to 77.6%
 - When adjusted for changes in protein binding, %GLSM ratio for unbound AUC_{tau} ranged from 83.6% to 89.3%
- Trough TFV-DP levels in PBMCs were generally similar (but variable) during pregnancy and postpartum period
- In other published literature, there were changes of similar magnitude in FTC and TAF exposure during pregnancy, and these were not associated with virologic failure or perinatal (vertical) transmission^{1,2}
- U.S. DHHS clinical guidelines state that no dose adjustments are required for FTC or TAF during pregnancy³

Neonatal PK for BIC

BIC

- Mean (%CV) cord blood to maternal blood plasma concentration ratio (n = 29): 1.4 (35%)
- Median $t_{\frac{1}{2}}$ in neonates (n = 10): **43.1 hours**
- Other neonatal BIC PK parameters were not calculable or meaningful

BIC t_{1/2} in neonates (43 hours) was longer than that in adults (~18 hours across postpartum)

All Participants Were Virologically Suppressed at Delivery and Up to 18 Weeks Postpartum

Virologic Suppression in Adults

- Virologic suppression was maintained during pregnancy, delivery and through Week 18 postpartum
- All (100%) adult participants had HIV-1 RNA < 50 c/mL at delivery (32/32) and through Week 18 postpartum (32/32)*
- No virologic failure or treatment-emergent resistance was observed

CD4 Cell Count and CD4% in Adults

- CD4 cell count at baseline median (Q1, Q3):
 558 (409, 720) cells/µL
- Change from baseline to Week 12 postpartum, median (Q1, Q3): 159 (27, 296) cells/µL
- CD4% at baseline, median (Q1, Q3):
 32.3% (27.0%, 40.2%)
- Change from baseline at Week 12 postpartum, median (Q1, Q3): 0.1% (-2.3%, 4.2%)

No Virologic Findings in Neonates

- Neonate participant data available for:
 - n = 2 at birth
 - n = 3 at 4–8 weeks
 post birth
- All 3 had HIV-1 RNA < 50 c/mL, indicating no perinatal (vertical) HIV-1 transmission

In concordance with the current study data efficacy, IMPAACT data presented at CROI 2023 reported that 90% of participants receiving B/F/TAF during pregnancy were virologically suppressed at delivery^{†1}

B/F/TAF Was Generally Well Tolerated in Adults and Neonates

	Maternal (N = 33)		Neonate (N = 29)	
Type of AE n (%)				
Any AE	26 (79)		12 (41)	
Common AEs	Back pain Gestational diabetes Anemia False labor	4 (12) 4 (12) 3 (9) 3 (9)	Neonatal jaundice Respiratory distress	3 (10) 3 (10)
	Preeclampsia	3 (9)		
Drug-related AE	1 (3)*		0	
SAE	6 (18)		5 (17)	
Drug-related SAE	1 (3)*		0	
AE leading to premature	0		0	
discontinuation	0		0	
Death	0		0	
Laboratory evaluations				
Grade 1/2 Grade ≥ 3	24 (72) 6 (18)	24 (72) 6 (18)		

Median duration of B/F/TAF exposure was 27 weeks

*False labor; †Grade 3 glycosuria in a hyperglycemic participant with gestational diabetes

AE, adverse event; B/F/TAF, bictegravir/emtricitabine/tenofovir alafenamide; SAE, serious adverse event

Conclusions

•	 BIC exposure was lower during pregnancy than postpartum; extent of the difference was less pronounced for unbound exposures and in non-pregnant adult PWH¹ Overall, individual C_{trough} values were > IQ1 in all participants across each of the four periods (except in one participant during the second trimester) Median C_{trough} was ~7- and 6-fold higher than IQ1 in the second and third trimesters, respectively FTC and TAF PK observations were consistent with published literature^{2,3}
· · ·	All (32/32) adult participants had HIV-1 RNA < 50 c/mL at delivery and maintained virologic suppression through 18 weeks postpartum, with no observed virologic failure or treatment-emergent resistance Median CD4 cell count and CD4% remained stable for adult participants through 12 weeks postpartum BIC levels in neonates (n = 10) and cord blood data (n = 29) indicated that it crosses the placental barrier Data from available neonates (n = 3) did not show any perinatal HIV-1 transmission
	B/F/TAF was well tolerated in pregnant women through their second and third trimesters and postpartum No discontinuations due to AEs AEs were mostly Grade 1/2; overall incidence and types of AE were consistent with those expected

Data from this study and available evidence suggest the suitability of once-daily B/F/TAF use throughout pregnancy, including the second and third trimesters, and indicate that no dose change is needed²⁻⁵

AE, adverse event; B/F/TAF, bictegravir/emtricitabine/tenofovir alafenamide; BIC, bictegravir; c, copies; C_{trough}, trough concentration; IQ1, inhibitory quotient at protein-adjusted 95% effective concentration; PWH, people with HIV-1 1. Biktarvy USPI. <u>https://www.gilead.com/-/media/files/pdfs/medicines/hiv/biktarvy/biktarvy/biktarvy/biktarvy_pi.pdf</u> (accessed June 13, 2023); 2.Colbers APH, et al. AIDS 2013;27:739-748; 3. Brooks KM, et al. AIDS 2021;35:407-417; 4. DHHS. https://clinicalinfo.hiv.gov/en/guidelines/perinatal/whats-new (accessed June 13, 2023); 5. Powis KM, et al. CROI 2023, Poster 783

Acknowledgments

To access a plain language summary, and supplemental data for this presentation, please scan the QR code

Thank you to the investigators, study staff and all participants

Pharmacokinetics, Safety and Efficacy of Bictegravir/Emtricitabine/Tenofovir Alafenamide (B/F/TAF) in Virologically Suppressed Pregnant Women With HIV

Supplementary Materials

Haeyoung Zhang,¹ Hal Martin,¹ Ludwig Lin,¹ Maggie Davis,¹ Hailin Huang,¹ Deqing Xiao,¹ Priyanka Arora,¹ Anchalee Avihingsanon,² Ellen Koenig,³ Ramesh Palaparthy,¹ Sandhya Girish,¹ Dhananjay Marathe¹

¹Gilead Sciences, Inc., Foster City, California, U.S.A.; ²HIV-NAT Thai Red Cross AIDS Research Centre, Bangkok, Thailand; ³Dominican Institute of Virological Studies – IDEV, Santiago, Dominican Republic

IAS 2023, the 12th IAS Conference on HIV Science 23–26 July 2023 Brisbane, Australia

Demographic and Baseline Characteristics

Adult participants	N = 33
Age, years, median (Q1, Q3)	30 (26, 34)
Race, n (%) Asian / Black / White / Other	25 (76) / 6 (18) / 1 (3) / 1 (3)
Ethnicity, n (%) Hispanic or Latinx	4 (12)
HIV-1 RNA < 50 c/mL, n (%)	33 (100)
CD4 count, cells/µL, median (Q1, Q3)	558 (409, 720)
CD4, %, median (Q1, Q3)	32 (27, 40)
Neonate participants	N = 29
Female sex at birth, n (%)	10 (35)
Race, n (%) Asian / Black / Other	24 (83) / 4 (14) / 1 (3)
Ethnicity, n (%) Hispanic or Latinx	4 (14)
HIV-1 RNA, n (%) < 50 c/mL Missing	2 (7) 27 (93)
Apgar score, median (Q1 Q3)*	9 (9, 10)

*Used to assess status of newborn infants using five measures (appearance of skin color, pulse, grimace response, activity and respiration) on a scale of 0 to 2 for each measure with 10 being the maximum overall Apgar score c, copies; Q, quartile

Pharmacokinetics of BIC: Unbound Plasma Concentration–Time Profiles

Plasma unbound BIC concentrations were lower during pregnancy vs. postpartum, but similar within each period (second vs. third trimester; 6 vs. 12 weeks)

Pharmacokinetics of FTC

Parameter	Second trimester (n = 21)	Third trimester (n = 30)	Week 6 postpartum (n = 31)	Week 12 postpartum (n = 32)	3rd trimester vs. 12 weeks postpartum (%GLSM ratio [90% Cl])
Total AUC_{tau} , h∙µg/mL, mean (%CV)	10.3 (20.0)	10.4 (20.3)	16.3 (24.7)	15.3 (21.9)	69.2 (65.9, 72.7)
C _{max} , μg/mL, mean (%CV)	2.64 (36.6)	2.59 (26.5)	3.39 (28.0)	3.36 (26.9)	77.5 (70.3, 85.3)
C _{trough} , μg/mL, mean (%CV)	0.0598 (104)	0.0514 (27.2)	0.152 (179)	0.0811 (33.7)	64.7 (59.3, 70.6)
T _{max} , h, median (Q1, Q3)	1.50 (1.00, 2.00)	1.50 (1.00, 2.00)	1.50 (1.00, 1.55)	1.00 (1.00, 1.75)	-
t _½ , h, median (Q1, Q3)	6.43 (5.62, 6.70)	6.41 (5.59, 6.90)	6.27 (5.65, 6.76)	5.76 (5.29, 6.58)	-

FTC exposures were lower during pregnancy compared with postpartum

%CV, percentage coefficient of variation; AUC_{tau}, area under the plasma drug concentration versus time curve over the dosing interval; CI, confidence interval; C_{max}, maximum observed plasma concentration of drug; C_{trough}, trough concentration; FTC, emtricitabine; GLSM, geometric least-squares mean; Q, quartile; t_½, terminal elimination half-life; T_{max}, observed time point of C_{max}

Pharmacokinetics of TAF

Parameter	Second trimester (n = 21)	Third trimester (n= 30)	Week 6 postpartum (n = 31)	Week 12 postpartum (n = 32)	3rd trimester vs. 12 weeks postpartum (%GLSM ratio [90% Cl])
Total AUC_{tau} , h∙µg/mL, mean (%CV)	0.236 (45.6)	0.212 (45.0)	0.374 (41.0)	0.296 (31.8)	69.7 (58.6, 82.9)
Unbound AUC_{tau} , h∙µg/mL, mean (%CV)	0.015 (28.2)	0.016 (28.4)	0.018 (33.8)	0.017 (23.4)	89.2 (78.2, 102)
C _{max} , μg/mL, mean (%CV)	0.332 (52.1)	0.271 (42.1)	0.506 (49.2)	0.495 (52.5)	57.1 (46.0, 70.9)
C _{last} , μg/mL, mean (%CV)	0.00449 (114)	0.00480 (84.4)	0.00313 (59.1)	0.00336 (59.5)	_
T _{max} , h, median (Q1, Q3)	0.75 (0.50, 1.50)	1.00 (0.75, 1.50)	0.75 (0.50, 1.00)	0.75 (0.50, 1.00)	_
t _½ , h, median (Q1, Q3)	0.30 (0.25, 0.46)	0.28 (0.22, 0.35)	0.40 (0.35, 0.51)	0.35 (0.30, 0.43)	_

TAF exposures were lower during pregnancy compared with postpartum

%CV, percentage coefficient of variation; AUC_{tau}, area under the plasma drug concentration versus time curve over the dosing interval; CI, confidence interval; C_{last}, last observed quantifiable concentration of the drug; C_{max}, maximum observed plasma concentration of drug; GLSM, geometric least-squares mean; TAF, tenofovir alafenamide; t₁, terminal elimination half-life; T_{max}, observed time point of C_{max}

Percentage GLSM Ratios of AUC_{tau} for B/F/TAF

	BIC		FTC	FTC TAF		
AUC _{tau} Unbound AUC _{tau}		Unbound AUC _{tau} *	AUC _{tau}	AUC _{tau}	Unbound AUC _{tau} *	
	n = 20/31		n = 21/31	n = 15/27		
Second trimester vs. 6 weeks postpartum	44.7 (40.0, 49.8)	61.8 (55.3, 69.0)	64.3 (61.0, 67.8)	62.5 (50.8, 77.0)	83.6 (72.9, 95.9)	
Second trimester vs. 12 weeks postpartum	n = 20/32		n = 21/32	n = 15/30		
	41.2 (36.7, 46.3)	59.7 (52.5, 68.0)	67.4 (63.5, 71.6)	77.6 (65.4, 92.1)	89.3 (79.0, 100.8)	
	n = 30/31		n = 30/31	n = 17/27		
Third trimester vs. 6 weeks postpartum	44.4 (40.0, 49.3)	62.4 (55.7, 69.9)	65.1 (61.8, 68.6)	56.5 (46.3, 69.0)	86.2 (71.9, 103.2)	
	n = 30/32		n = 30/32	n = 17/30		
Third trimester vs. 12 weeks postpartum	40.6 (36.8, 44.8)	58.8 (52.7, 65.7)	69.2 (65.9, 72.7)	69.7 (58.6, 82.9)	89.2 (78.2, 101.6)	

The range of % GLSM ratios for comparing BIC AUC_{tau} during pregnancy vs. postpartum (primary endpoint) was 41% to 45%; the corresponding range for unbound BIC was 59% to 62%

Values in the table are % GLSM ratios with 90% confidence intervals in parentheses; n = number of participants in the pregnancy (test)/postpartum (reference) analysis set *Unbound AUC_{tau} = AUC_{tau} × fraction unbound

AUC_{tau}, area under the plasma drug concentration versus time curve over the dosing interval; B/F/TAF, bictegravir/emtricitabine/tenofovir alafenamide; BIC, bictegravir; FTC, emtricitabine; GLSM, geometric least-squares mean; TAF, tenofovir alafenamide

Additional Data: Pharmacokinetics of BIC, FTC and TAF

Parameter	Second trimester (n = 21)	Third trimester (n = 30)	Week 6 postpartum (n = 31)	Week 12 postpartum (n = 32)
BIC				
CL _{SS} /F, mL/h, mean (%CV)	912 (47.5)	902 (31.8)	399 (28.4)	362 (26.5)
V _Z /F, mL, mean (%CV)	11,900 (37.1)	13,400 (32.4)	10,300 (35.9)	8,690 (27.6)
T _{max} , h, median (Q1, Q3)	2.00 (1.50, 3.00)	2.00 (1.50, 3.00)	1.50 (1.00, 3.00)	1.50 (1.00, 2.00)
t _{1/2} , h, median (Q1, Q3)	9.09 (8.24, 11.5)	9.91 (9.10, 11.4)	18.2 (14.4, 21.5)	17.4 (14.3, 19.4)
FTC				
CL _{SS} /F, mL/h, mean (%CV)	20,200 (19.7)	20,000 (21.1)	13,000 (23.9)	13,600 (20.7)
V _Z /F, mL, mean (%CV)	182,000 (20.2)	185,000 (30.5)	117,000 (30.1)	118,000 (28.3)
TAF				
CL _{SS} /F, mL/h, mean (%CV)	123,000 (36.1)	135,000 (33.2)	76,900 (37.9)	92,900 (31.7)
V _Z /F, mL, mean (%CV)	62,300 (59.7)	53,200 (31.4)	44,400 (30.8)	49,800 (44.2)

%CV, percentage coefficient of variation; BIC, bictegravir; CL_{ss}/F, apparent oral clearance of the drug at steady state; FTC, emtricitabine; t_{1/2}, terminal elimination half-life; TAF, tenofovir alafenamide; T_{max}, observed time point of C_{max}; V_z/F, apparent volume of distribution

Neonatal Pharmacokinetics for TAF

TAF

- Individual cord blood to maternal blood plasma concentration ratios (n = 2): 0.09, 1.12
- Other neonatal TAF PK parameters were not calculable due to undetectable TAF in all samples

TAF was undetectable in all neonate plasma PK samples