

Livdelzi[®] (seladelpar) Use in Hepatic Impairment

This document is in response to your request for information regarding Livdelzi® (seladelpar [SEL]) for the treatment of primary biliary cholangitis (PBC) and its use in patients with hepatic impairment.

Some data may be outside of the US FDA-approved prescribing information. In providing this data, Gilead Sciences, Inc. is not making any representation as to its clinical relevance or to the use of any Gilead product(s). For information about the approved conditions of use of any Gilead drug product, please consult the FDA-approved prescribing information.

The full indication, important safety information, and boxed warnings are available at: www.gilead.com/-/media/files/pdfs/medicines/pbc/livdelzi/livdelzi_pi.

Summary

Product Labeling¹

SEL has been associated with dose-related increases in serum transaminase (AST and ALT) levels $>3 \times$ ULN in PBC patients receiving 50 mg once daily (5 \times higher than the recommended dosage) and 200 mg (20 \times higher than the recommended dosage) once daily. Transaminase levels returned to pretreatment levels upon SEL discontinuation. SEL10 mg once daily did not show a similar pattern for increases in transaminase levels.

Obtain BL clinical and laboratory assessments at treatment initiation with SEL and monitor thereafter according to routine patient management. Interrupt SEL treatment if the liver tests (ALT, AST, TB, and/or ALP) worsen, or the patient develops signs and symptoms consistent with clinical hepatitis (eg, jaundice, right upper quadrant pain, eosinophilia). Consider permanent discontinuation if liver tests worsen after restarting SEL.

Avoid use of SEL in patients with complete biliary obstruction. If biliary obstruction is suspected, interrupt SEL and treat as clinically indicated.

Clinical Data on SEL Use in Hepatic Impairment

RESPONSE was a phase 3, placebo-controlled study that evaluated SEL 10 mg in 193 participants with PBC with an inadequate response or intolerance to UDCA. The primary composite endpoint was defined as an ALP level <1.67 \times ULN, an ALP level decrease by \geq 15%, and a TB level \leq 1 \times ULN.

- Among participants with cirrhosis, 38.9% and 22.2% of participants in the SEL and placebo arms, respectively, achieved the composite biochemical response at Month 12, with a difference of 16.7% (95% CI: -22.7 to 47.1).3
- Regardless of BL cirrhosis status, participants in the SEL arm had greater reductions in ALP, ALT, and GGT levels from BL to Month 12 than did participants in the placebo arm.⁴
- SAEs experienced by participants with and without cirrhosis were similar. 3.4

Pooled analyses of an open-label, phase 2 study and the phase 3 ENHANCE study were conducted to assess outcomes in participants with PBC with and without compensated

cirrhosis⁵ and in participants with compensated cirrhosis and PHT.⁶ The composite efficacy endpoint was identical to that of the RESPONSE study.^{5.6}

- Efficacy appeared comparable in participants with PBC with and without cirrhosis. Among those with cirrhosis, significantly more participants in the SEL 10 mg arm than in the placebo arm achieved the composite endpoint (63% vs 0%; *P*=0.0351); the rate achievement in the SEL 5 mg arm did not reach significance (50%). SEL was well tolerated in participants with and without cirrhosis.⁵
- In participants with cirrhosis and PHT, improvements in biomarkers of cholestasis and hepatocellular injury were achieved. SEL was also well tolerated in these participants. 6

The ongoing, open-label, phase 3 ASSURE study evaluated participants who entered the study from the RESPONSE study and several legacy studies. 7

- In an interim analysis of participants with cirrhosis who entered the study from legacy studies (n=35), there was a durable improvement (for up to 2 years) in cholestasis markers. Overall, AEs were reported by 28 participants (80%) with cirrhosis, and 8 participants (22.9%) reported liver-related AEs.⁸
- In an interim analysis that evaluated trends in LSMs through 3 years of treatment with SEL 10 mg and included all participants (N=311) who had ≥1 post-BL LSM assessment, LSMs tended to improve in the subgroup of participants with the highest BL LSMs (≥16.9 kPa): LSM change from BL, +0.1 kPa; LSM percent change from BL, +2%. The presence of cirrhosis at BL was not associated with a worsening of LSMs by 30% from BL to Month 36.⁹
- Overall, there was no increase in the frequency of exposure-adjusted TEAEs through Month 36 in participants from the RESPONSE study and several legacy studies. Rates of liver-related AEs were stable or decreased over the study period, and most were Grade 1 or 2.⁷

Product Labeling¹

Indications and Usage

<u>Limitations of Use</u>: Use of SEL is not recommended in patients who have or develop decompensated cirrhosis (eg, ascites, variceal bleeding, hepatic encephalopathy).

Warnings and Precautions

Liver test abnormalities

SEL has been associated with dose-related increases in serum transaminase (AST and ALT) levels $>3 \times$ ULN in PBC patients receiving 50 mg once daily (5 \times higher than the recommended dosage) and 200 mg (20 \times higher than the recommended dosage) once daily. Transaminase levels returned to pretreatment levels upon SEL discontinuation. SEL10 mg once daily did not show a similar pattern for increases in transaminase levels.

Obtain BL clinical and laboratory assessments at treatment initiation with SEL and monitor thereafter according to routine patient management. Interrupt SEL treatment if the liver tests (ALT, AST, TB, and/or ALP) worsen, or the patient develops signs and symptoms consistent with clinical hepatitis (eg, jaundice, right upper quadrant pain, eosinophilia). Consider permanent discontinuation if liver tests worsen after restarting SEL.

Gilead Sciences, Inc. is providing this document to you, a US Healthcare Professional, in response to your unsolicited request for medical information.

Biliary obstruction

Avoid use of SEL in patients with complete biliary obstruction. If biliary obstruction is suspected, interrupt SEL and treat as clinically indicated.

Use in Specific Populations

Hepatic impairment

No dosage adjustment is recommended for PBC patients with mild hepatic impairment (Child-Pugh A).

The safety and efficacy of SEL in patients with decompensated cirrhosis have not been established. Use of SEL is not recommended in patients who have or develop decompensated cirrhosis (eg, ascites, variceal bleeding, hepatic encephalopathy).

Monitor patients with cirrhosis for evidence of decompensation. Consider discontinuing SEL if the patient progresses to moderate or severe hepatic impairment (Child-Pugh B or C).

Clinical Pharmacology

Pharmacokinetics: patients with hepatic impairment

Hepatic impairment of various etiologies

Following a single oral dose of 10 mg SEL, SEL AUC increased 1.1-fold in subjects with mild (Child-Pugh A), 2.5-fold in moderate (Child-Pugh B), and 2.1-fold in severe (Child-Pugh C) hepatic impairment. SEL C_{max} increased 1.3-fold in subjects with mild (Child-Pugh A), 5.2-fold in moderate (Child-Pugh B), and 5-fold in severe (Child-Pugh C) hepatic impairment.

Hepatic impairment in patients with PBC

Compared to PBC patients with mild hepatic impairment (Child-Pugh A) without portal hypertension, SEL exposures (C_{max} , AUC) were 1.7 to 1.8-fold higher in PBC patients with mild hepatic impairment with portal hypertension and 1.6 to 1.9-fold higher in PBC patients with moderate hepatic impairment (Child-Pugh B) after a single oral dose of 10 mg SEL.

Accumulation ratios were less than 1.2-fold in PBC patients with mild hepatic impairment with portal hypertension and PBC patients with moderate hepatic impairment following 10 mg SEL once daily dosing for 28 days.

Clinical Data on SEL Use in Hepatic Impairment

RESPONSE Study

Study design and demographics²

RESPONSE was a phase 3, international, randomized, placebo-controlled study that evaluated SEL 10 mg in participants with PBC and an inadequate response to or intolerance of first-line treatment with UDCA. Participants (N=193) were randomly assigned 2:1 to receive either SEL 10 mg (n=128) or placebo (n=65) once daily for 12 months. Eligibility

criteria included participants with PBC aged 18 to 75 years who had received UDCA for ≥12 months or had an intolerance of UDCA (last dose >3 months from screening) and had an ALP ≥1.67 × ULN, an AST/ALT level ≤3 × ULN, a TB level ≤2 × ULN, an eGFR >45 mL/min/1.73 m², an INR <1.1 × ULN, and a platelet count ≥100,000/mm³. Those with advanced PBC (ie, albumin level <lower limit of normal and TB level >ULN), hepatic decompensation, or other chronic liver disease were excluded.

The primary composite endpoint was the proportion of participants who achieved a biochemical response, defined as an ALP level <1.67 x ULN, an ALP level decrease by ≥15%, and a TB level ≤1 x ULN. Key secondary endpoints included ALP normalization (≤1 x ULN) at Month 12 and change from BL to Month 6 in weekly mean pruritus NRS score in those with an NRS score ≥4 (ie, moderate-to-severe pruritus) at BL.

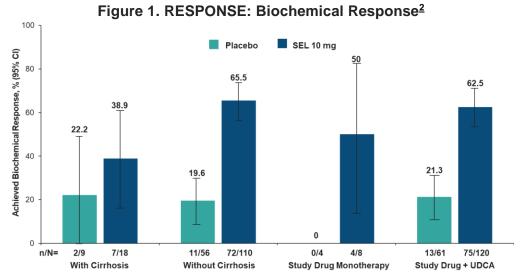
Overall, 14% of participants (27/193) had cirrhosis at BL (Table 1).

Table 1. RESPONSE: BL Demographics and Disease Characteristics (ITT)²

Key Demog	graphics and Characteristics	SEL 10 mg (n=128)	Placebo (n=65)
Age, mean ±	SD, years	56.6±10	57±9.2
Female, n (%)		123 (96.1)	60 (92.3)
Race or ethnicity, White/Asian/American Indian or Alaska Native/Black/Hispanic or Latinx, %		89.1/5.5/2.3/1.6/22.7	86.2/6.2/4.6/3.1/41.5
Duration of dis	sease, mean ± SD, years	8.2±6.7	8.6±6.5
Cirrhosis, ^a n (%)	18 (14.1)	9 (13.8)
Liver stiffness	, mean ± SD, kPa	9.8±6.2	8.7±4.2
History of pru	ritus, n (%)	91 (71.1)	48 (73.8)
Pruritus NRS	score, ^b mean ± SD	3±2.8	3±3
Score ≥4, n	(%)	49 (38.3)	23 (35.4)
	ALP, ^c U/L	314.6±123	313.8±117.7
l abayatayı	TB, mg/dL	0.77±0.3	0.74±0.3
Laboratory	AST/ALT,d U/L	39.6±16.1/47.4±23.5	41.7±16/48.2±22.8
values, mean ± SD	GGT, ^e U/L	269±240	287.5±249.6
IIIEaII ± 3D	Albumin, g/dL	4.2±0.3	4.1±0.2
	Platelet count,f ×103/mm3	241.7±78.9	241.9±84.5

^aNo participants in the SEL arm and 3 (4.6%) participants in the placebo arm had PHT.

Efficacy


At Month 12, 38.9% (7 out of 18) and 22.2% (2 out of 9) of SEL-treated participants and placebo-treated participants with cirrhosis, respectively, had achieved the composite biochemical response (difference: 16.7%; 95% CI: -22.7 to 47.1).^{2.3}

These results were considered generally consistent with those observed in participants without cirrhosis, with the difference in response between those with and without cirrhosis deemed not clinically meaningful by the investigators. 2.3

^bNRS scores range from 0 (no itch) to 10 (worst itch imaginable).

[°]ULN: 116 U/L. dULN: 34/41 U/L. eULN: 52 and 38 U/L in men and women, respectively.

^fData were missing for 3 participants in the SEL 10 mg arm.

Regardless of their BL cirrhosis status, participants in the SEL arm had greater reductions in ALP, ALT, and GGT levels from BL to Month 12 than did participants in the placebo arm (Figure 2). In both the SEL and placebo arms, TB levels remained stable in participants with and those without cirrhosis. In the SEL arm, mean INR and MELD scores were similar between participants with and those without cirrhosis. In participants with BL cirrhosis, liver stiffness generally remained stable over 12 months in both the SEL and placebo arms.⁴

—— Placebo —— SEL 10 mg **ALP ALT Patients With Cirrhosis** Patients Without Cirrhosis **Patients With Cirrhosis Patients Without Cirrhosis** 100 100 23.2 % Change From Baseline, LS Mean (±SE) -18 U/L 20 20 1.9 U/L -50 -100 -10 -134.8 U/L -5.1 U/L -150 -12.9 Ŭ/L -150 BL M1 M12 BL M1 мз М6 М9 M12 M12 МЗ BL BL M1 M12 **TB**d **GGT** % Change From Baseline,
LS Mean (±SE)
90 90 1 **Patients With Cirrhosis Patients Without Cirrhosis Patients With Cirrhosis Patients Without Cirrhosis** 10.3 U/L 0.43 mg/dL 0.5 1 -0.02 mg/dL -50 -112.4 U/L 0.17 mg/dL -100 -0.05 mg/dL М9 М9 M12 МЗ М6 М9 M12 BL M1 M12

Figure 2. RESPONSE: Cholestatic and Liver Injury Markers^{4a}

Abbreviation: LS=least squares.
^aParticipants with cirrhosis: placebo, n=9; SEL 10 mg, n=18; participants without cirrhosis: placebo, n=56; SEL 10 mg, n=110. ^bP<0.001. ^cP<0.05. ^dMean TB levels were normal at BL.

Safety

The safety profiles of participants with and without cirrhosis at BL were similar (Table 2).

Table 2. RESPONSE: AEs in Participants in Any Treatment Arm by Presence of Cirrhosis²⁻⁴

		Participants V	Vith Cirrhosis	Participants Wi	thout Cirrhosis
Al	Es, n (%)	SEL 10 mg	Placebo	SEL 10 mg	Placebo
		(n=18)	(n=9)	(n=110)	(n=56)
	Any AE	16 (89)	8 (89)	95 (86)	47 (84)
	Grade ≥3 AEs (per CTCAE)	2 (11)	2 (22)	12 (11)	3 (5)
	SAEs	2 (11) ^a	1 (11)	7 (6)	3 (5)
Overall safety	Treatment-related SAEs	0	0	0	0
	AE that led to drug discontinuation	0	2 (22)	4 (4)	1 (2)
	AE that led to death	0	0	0	0
Liver-related AE		2 (11) ^b	2 (22)	6 (5)	4 (7)
	COVID-19	3 (16.7)	2 (22.2)	20 (18.2)	8 (14.3)
	Pruritus	2 (11.1)	2 (22.2)	4 (3.6)	8 (14.3)
Λ Γ ο 41ο ο 4	Nausea	2 (11.1)	1 (11.1)	6 (5.5)	2 (3.6)
AEs that	Abdominal pain	2 (11.1)	0	7 (6.4)	1 (1.8)
occurred in ≥2 participants	Vitamin D deficiency	2 (11.1)	0	4 (3.6)	2 (3.6)
with cirrhosis in	Pharyngitis	2 (11.1)	0	2 (1.8)	5 (8.9)
either treatment	Diabetes mellitus	2 (11.1)	0	1 (0.9)	0
group	Leukopenia	2 (11.1)	0	0	1 (1.8)
group	Thrombocytopenia	2 (11.1)	0	0	0
	Dry eye	1 (5.6)	2 (22.2)	0	0
	Dry mouth	0	2 (22.2)	1 (0.9)	0
	ALT or AST ≥3 x ULN	1 (6)	2 (22)	8 (7)	5 (9)
Laboratory	TB >2 × ULN	1 (6)	2 (22)	2 (2)	1 (2)
parameters of interest	Creatine kinase >3 x ULN	0	0	2 (2)	1 (2)
	Cr ≥1.5 × BL	0	0	1(1)	0

^aOne participant who had a history of osteoporosis had a femur fracture, and 1 participant who had a history of coronary artery disease had coronary artery disease, dyspnea exertional, and esophageal varices hemorrhage.

Pooled Analyses From the Dose-Ranging and ENHANCE Studies: Participants With and Without Compensated Cirrhosis

Study design and BL demographics

This pooled analysis of an open-label, phase 2 study (SEL 10 mg and 5 mg)¹⁰ and the phase 3 ENHANCE study¹¹ evaluated the efficacy and safety of SEL in participants with and without compensated cirrhosis. Eligibility criteria included a PBC diagnosis, ALP levels ≥1.67 × ULN, and UDCA use for the past 12 months or intolerance of UDCA treatment. Diagnoses of cirrhosis were confirmed by liver biopsy, liver elastography, or imaging. PHT diagnosis was based on the presence of thrombocytopenia, splenomegaly, or gastroesophageal varices, or from the medical record. The efficacy endpoints included the following: a composite endpoint (defined as an ALP level <1.67 × ULN, ≥15% ALP decrease

^bOne participant experienced ascites (Grade 1) and then experienced an SAE of esophageal varices hemorrhage (Grade 3), and 1 participant experienced hepatomegaly (Grade 1).

Gilead Sciences, Inc. is providing this document to you, a US Healthcare Professional, in response to your unsolicited request for medical information.

from BL, and a TB level ≤ULN), % change in ALP level, the proportion of participants achieving an ALP level ≤ULN, and changes in liver biochemistry.⁵

Fifty-three participants (phase 2 study, n=24; ENHANCE study, n=29; all were Child-Pugh A) had cirrhosis at BL, which included 20 participants identified by imaging (ultrasound, CT, or MRI), 19 identified by a liver biopsy, and 14 identified by liver elastography (FibroScan or magnetic resonance elastography). One participant had a history of hepatic encephalopathy.⁵

Table 3. Pooled Study in Participants With and Without Cirrhosis: BL Demographics and Disease Characteristics⁵

Key Demographics and		Participant	s With Cirrh	osis (n=53)	Participants Without Cirrhosis (n=313)		
	cteristics	SEL 10 mg (n=24)	SEL 5 mg (n=22)	Placebo (n=7)	SEL10 mg (n=117)	SEL 5 mg (n=116)	Placebo (n=80)
Female/male	e, n	21/3	21/1	7/0	110/7	109/7	78/2
Age, mean ±	SD, years	59±9	57±8	56±12	56±9	56±9	56±8
Duration of F	PBC, mean ± SD,	10±5	10±8	9±9	9±7	9±6	8±6
AMA positive	e, n (%)	23 (96)	21 (96)	6 (86)	104 (89)	104 (90)	69 (86)
BMI, mean ±	SD, kg/m ²	27±5	26±5	26±5	28±6	27±6	28±6
History of pr	uritus, n (%)	20 (83)	19 (86)	6 (86)	81 (69)	83 (72)	51 (64)
MELD score	, mean ± SD	7.6±1.6	7.6±1.6	7±1.2	6.7±0.8	6.7±0.8	6.6±0.7
UDCA dose, mg/kg/day	mean ± SD,	17±4	15±5	15±4	15±4	16±4	15±2
UDCA intole	rant, n (%)	2 (8)	1 (5)	0	9 (8)	9 (8)	2 (3)
Mean ± SD	Normal range						
ALP	37-116 U/L	299±103	278±121	278±68	294±124	319±148	295±109
ALT	6-41 U/L	57±24	43±25	46±18	44±20	48±22	44±21
TB	0.1-1.1 mg/dL	0.9±0.4	0.9±0.4	0.9±0.6	0.7±0.3	0.7±0.3	0.7±0.3
DB	0-0.2 mg/dL	0.3±0.2	0.3±0.2	0.3±0.3	0.2±0.1	0.2±0.2	0.2±0.1
GGT	7–38 U/L	226±134	232±238	219±165	245±229	236±183	230±196
AST	9-34 U/L	55±20	44±20	41±12	39±14	40±16	37±17
Platelets	$140-400 \times 10^9/L$	206±73	161±90	279±72	258±73	243±70	265±77
INR	0.8-1.2	1.1±0.1	1.1±0.1	1±0.1	1±0.1	1±0.1	1±0.1
Albumin	3.5-5.5 g/dL	4±0.4	3.9±0.4	4.1±0.2	4.1±0.3	4.1±0.3	4.2±0.2

Efficacy⁵

The efficacy of SEL appeared to be comparable between cirrhotic and noncirrhotic participants with PBC (Figure 3).

COMPOSITE ENDPOINT ALP NORMALIZATION CIRRHOSIS NO CIRRHOSIS **CIRRHOSIS** NO CIRRHOSIS 100% 100% 100% 100% 90% 90% 76% 80% 80% 80% 70% 63% 70% 55% 60% 60% 60% 60% *P*<0.0001 50% 50% 40% 40% 40% 40% 32% 30% 30% 17% 20% 20% 14% 20% 20%

Figure 3. Pooled Study in Participants With and Without Cirrhosis: Composite Endpoint and ALP Normalization⁵

Figure 4. Pooled Study in Participants With and Without Cirrhosis: Change in ALP, ALT, TB, GGT, AST, and Platelets⁵

SEL

10 mg

Placebo SEL

5 mg

10%

0%

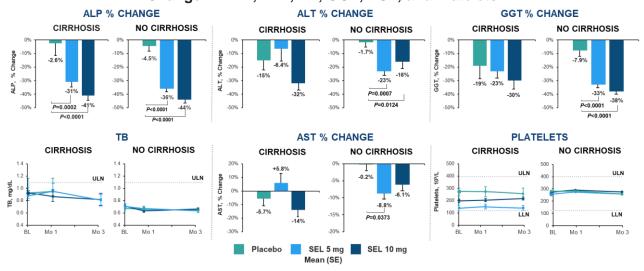
Placebo SEL

5 ma

10%

SEL

10 mg


6%

SEL

SEL

10 mg

Placebo

Safety⁵

0%

Placebo

SEL

SEL

0%

SEL appeared to be well tolerated in participants with and without cirrhosis (Table 4). No AEs that resulted in death, treatment-related Grade ≥3 AEs (CTCAE), or treatment-related SAEs were reported.

Table 4. Pooled Study in Participants With and Without Cirrhosis: AEs⁵

	Participants With Cirrhosis (n=53)			Participants Without Cirrhosis (n=313)		
AEs, n (%)	SEL 10 mg (n=24)	SEL 5 mg (n=22)	Placebo	SEL 10 mg (n=117)	SEL 5 mg (n=116)	Placebo (n=80)
Participant with ≥1 AE	15 (63)	17 (77)	(n=7) 6 (86)	76 (65)	75 (65)	48 (60)
Any TRAE	3 (13)	8 (36)	3 (43)	22 (19)	27 (23)	6 (8)
Any SAE	1 (4) ^a	2 (9) ^b	0	2 (2)°	2 (2)d	2 (3) ^e
Any AE that led to discontinuation of SEL	1 (4) ^f	0	0	1 (1) ⁹	2 (2) ^h	-

		Participant	s With Cirrh	osis (n=53)	Participants Without Cirrhosis (n=313)			
AEs,	n (%)	SEL 10 mg (n=24)	SEL 5 mg (n=22)	Placebo (n=7)	SEL 10 mg (n=117)	SEL 5 mg (n=116)	Placebo (n=80)	
	Dry mouth	4 (17)	1 (5)	0	0	6 (5)	0	
Most	Pruritus	3 (13)	2 (9)	0	12 (10)	7 (6)	6 (8)	
common	Headache	3 (13)	1 (5)	0	6 (5)	7 (6)	0	
AEs	Nausea	3 (13)	1 (5)	0	4 (3)	8 (7)	2 (3)	
	Fatigue	3 (13)	0	1 (14)	4 (3)	6 (5)	2 (3)	

^aAngina pectoris. ^bFebrile neutropenia and procedural pain. ^cSupraventricular tachycardia and cellulitis. ^dAtrial fibrillation and cognitive disorder. ^eRectal polyp and pyelonephritis acute. ^fDiscontinuation due to pruritus. ^gDiscontinuation due to insomnia and pruritus. ^hDiscontinuations due to gastroesophageal reflux disease and pruritus.

Pooled Analyses From the Dose-Ranging and ENHANCE Studies: Participants With Cirrhosis ± PHT

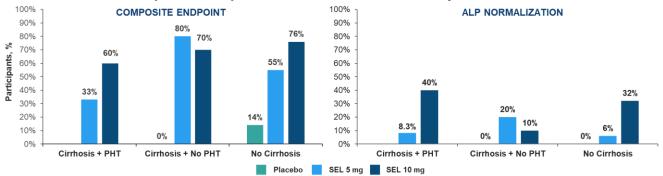
Study design and BL demographics

Another pooled analysis of the open-label, phase 2 study (SEL 10 mg and 5 mg) 10 and the phase 3 ENHANCE study 11 evaluated the efficacy and safety of SEL in participants with compensated cirrhosis and evidence of PHT. Eligibility criteria and cirrhosis diagnosis were identical to those in the previous pooled analysis. The efficacy endpoints included the following: a composite endpoint (defined as an ALP level <1.67 x ULN, a \geq 15% ALP decrease from BL, and a TB level \leq ULN), % change in ALP level, the proportion of participants achieving ALP normalization, and changes in liver biochemistry. 6

Of the 53 participants with cirrhosis at BL, 22 participants (phase 2 study, n=16; ENHANCE study, n=7) also had PHT. No participants in the placebo group had cirrhosis and PHT. §

Table 5. Pooled Study in Participants With Cirrhosis:

BL Demographics and Disease Characteristics by PHT Status⁶


Key Demographics and		PHT (n=22)	Without PHT (n=31)		
	racteristics	SEL 10 mg	SEL 5 mg	SEL 10 mg	SEL 5 mg	Placebo
Onal acteristics		(n=9)	(n=13)	(n=15)	(n=9)	(n=7)
Female, n (%)		8 (89)	12 (92)	13 (87)	9 (100)	7 (100)
Age, mean ± S	D, years	57±8	55±8	60±9	60±8	56±12
At PBC diagr	nosis, mean ± SD,	48±7	44±8	50±10	49±9	47±10
AMA positive,	n (%)	9 (100)	12 (92)	14 (93)	9 (100)	6 (86)
MELD score, n	MELD score, mean ± SD		8±1.8	7±1.7	7±0.7	7±1.2
UDCA dose, mean ± SD, mg/kg/day		16±2	16±6	17±4	13±3	15±4
Concomitant U	Concomitant UDCA, n (%)		12 (92)	13 (87)	9 (100)	7 (100)
Mean ± SD	Normal range					
ALP	37-116 U/L	284±77	273 117	308±118	285±134	278±68
ALT	6-41 U/L	47±22	46±29	62±24	40±20	46±18
TB	0.1-1.1 mg/dL	1±0.45	1±0.45	0.9±0.35	0.7±0.28	0.9±0.61
DB	0-0.2 mg/dL	0.4±0.27	0.4±0.23	0.3±0.17	0.2±0.13	0.3±0.29
GGT	7–38 U/L	207±136	196±126	237±137	285±346	219±165
AST	9-34 U/L	61±25	46±21	51±16	42±18	41±12
Platelets	140-400 × 109/L	152±72	96±27	231±60	255±57	279±72
INR	0.8-1.2	1.1±0.1	1.1±0.1	1±0.1	1±0.1	1±0.1
Albumin	3.5-5.5 g/dL	3.7±0.43	3.9±0.35	4.1±0.22	3.9±0.38	4.1±0.16

Note: Please refer to Table 3 for BL demographics and disease characteristics for participants without cirrhosis.

Efficacy⁶

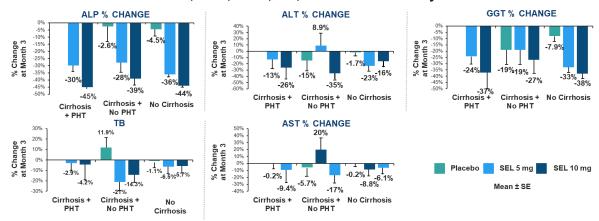

SEL treatment in participants with compensated cirrhosis and PHT resulted in improvements in biomarkers of cholestasis and hepatocellular injury (Figure 5).

Figure 5. Pooled Study in Participants With Cirrhosis: Composite Endpoint and ALP Normalization by PHT Status⁶

SEL treatment in participants with compensated cirrhosis and PHT resulted in improvements in biomarkers of cholestasis and hepatocellular injury (Figure 6).

Figure 6. Pooled Study in Participants With Cirrhosis: Percent Change From BL at Month 3 in ALP, ALT, GGT, TB, and AST Levels by PHT Status⁶

Safety⁶

Within Year 1, SEL was well-tolerated in participants with cirrhosis and PHT. No TRAEs of Grade ≥3 (CTCAE), liver-related SAEs, treatment-related SAEs, or SAEs with an outcome of death were reported in any group (Table 6).

Table 6. Pooled Study in Participants With Cirrhosis: Safety Outcomes Within Year 16

	PHT (PHT (n=22)		Without PHT (n=31)		
Safety Outcome, n (%)	SEL 10 mg (n=9)	SEL 5 mg (n=13)	SEL 10 mg (n=15)	SEL 5 mg (n=9)	Placebo (n=7)	
Participant with ≥1 AE	7 (78)	10 (77)	10 (67)	7 (78)	7 (100)	
TRAE	1 (11)	6 (46)	2 (13)	4 (44)	4 (57)	
AE that led to discontinuation of SEL	2 (22)	1 (8)	0	1 (11)	1 (14)	
Any SAE	1 (11)	3 (23)	0	2 (22)	0	

		PHT (n=22)		Without PHT (n=31)		
Safety O	utcome, n (%)	SEL 10 mg (n=9)	SEL 5 mg (n=13)	SEL 10 mg (n=15)	SEL 5 mg (n=9)	Placebo (n=7)
AEs that	Diarrhea	3 (33)	2 (15)	0	0	1 (14)
occurred in ≥8%	Urinary tract infection	2 (22)	1 (8)	0	0	0
of SEL-treated	Nausea	1 (11)	3 (23)	2 (13)	0	0
participants	Pruritus	1 (11)	2 (15)	3 (20)	0	1 (14)
overall	Abdominal pain upper	0	4 (31)	2 (13)	1 (11)	0

ASSURE: Open-Label, Long-Term, Phase 3 Study⁸

Study design and BL demographics

The nonrandomized, parallel, open-label, phase 3 ASSURE study (NCT03301506) is evaluating the long-term efficacy and safety of SEL 10 mg in participants with PBC (N=337). Eligible participants included those from the RESPONSE study (n=158; includes those who continued on SEL 10 mg [continuous SEL, n=104] and those who switched from placebo to SEL [crossover to SEL, n=54]) and the following legacy studies: the phase 3 ENHANCE study; a phase 2, dose-ranging study; a long-term, phase 3 safety study; and a phase 1b hepatic impairment study (overall for legacy studies, n=179). Efficacy endpoints include composite biochemical response (defined as an ALP level <1.67 × ULN, an ALP level decrease by \geq 15%, and a TB level \leq 1 × ULN), ALP normalization, changes in liver enzymes (eg, ALP, TB, GGT, and ALT), and changes in pruritus NRS score for participants with a BL score \geq 4.

Interim data analysis was performed and included all data through January 31, 2024. Analyses of overall study endpoints were performed for participants from the RESPONSE and legacy study groups; data for participants with cirrhosis (n=35; mean ± SD liver stiffness, 19.9±13.9 kPa) are from the legacy study group. Data from participants who received ≥1 dose of SEL 10 mg were analyzed.

Table 7. ASSURE: BL Demographics and Disease Characteristics in Legacy Study Participants With Cirrhosis⁸

Key Demographics and Characteristics	Participants With Cirrhosis ^a (n=35)
Age, mean ± SD, years	60.8±7.2
Female, n (%)	32 (91.4)
Race or ethnicity, White/Asian/American Indian or Alaska Native/Black or African American/Hispanic or Latinx, n (%)	25 (71.4)/6 (17.1)/3 (8.6)/1 (2.9)/4 (11.4)
BMI, mean ± SD, kg/m ²	27.2±5.6
Cirrhosis at BL, n (%)	35 (100)
Child-Pugh class, A/B, n (%)	31 (88.6)/4 (11.4)
Cirrhosis and PHT at BL, n (%b)	8 (22.9)
ALP level, ^c mean ± SD, U/L	245.4±99.2d
TB level, mean ± SD, mg/dL	0.995±0.49e
GGT, mean ± SD, U/L	216.1±223
ALT, mean ± SD, U/L	36.6±15.5

^aFive participants (14.3%) reported prior obeticholic acid and/or fibrates use, and 1 participant (2.9%) reported UDCA intolerance.

^bPercentage calculated from the number of participants with cirrhosis.

^cMean ALP values are from ASSURE entry. At RESPONSE entry, the mean ± SD ALP levels were 314.6±123 U/L and 313.8±117.7 U/L in the SEL (n=128) and placebo arms (n=65), respectively.

^dALP level <350 U/L, n=29 (82.9%).

eTB level ≤ULN, n=24 (68.6%).

Interim analysis in legacy study participants with cirrhosis

Efficacy

There was a rapid and durable improvement (for up to 2 years) in cholestasis markers in participants with cirrhosis in the legacy studies.

Figure 7. ASSURE: Composite Biochemical Response in Legacy Study Participants
With Cirrhosis⁸

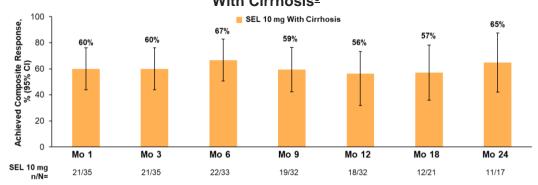


Figure 8. ASSURE: ALP Normalization in Legacy Study Participants With Cirrhosis⁸

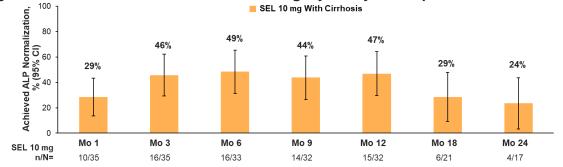


Figure 9. ASSURE: Change From BL in ALP and TB Levels in Legacy Study Participants With Cirrhosis⁸

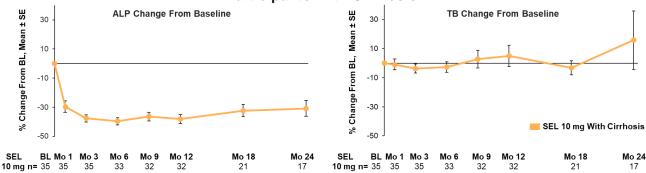
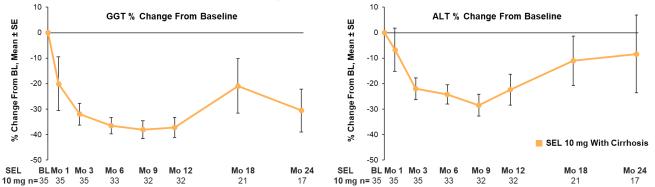



Figure 10. ASSURE: Percent Change From BL in GGT and ALT Levels in Legacy Study Participants With Cirrhosis⁸

Safety

Overall, AEs were reported in 80% of participants with cirrhosis (Table 8). Of the 7 participants who experienced SAEs, no SAEs were treatment related. Each SAE was observed in individual participants, without a particular pattern.

Table 8. ASSURE: AEs in Legacy Study Participants With Cirrhosis⁸

Safety Outcomes, n (%)	Legacy Study Participants With Cirrhosis (n=35)
AEs	28 (80)
Grade 3 AEs	5 (14.3)
AEs that led to treatment discontinuation	2 (5.7)
Liver-related AEs	8 (22.9)
Muscle-related AEs	3 (8.6)
SAEs	7 (20)

Eight participants experienced liver-related AEs, as presented in Table 9. Of the 5 Grade 3 AEs, 3 were liver-related: 1 was anorectal varices, another was an increase in blood bilirubin (also an SAE but the participant remained in the study), and the third was hepatorenal syndrome that was considered a protocol-defined PBC clinical outcome of ascites (also an SAE and led to discontinuation of treatment). The second AE that led to treatment discontinuation was an increase in blood bilirubin. A separate AE of increase in blood bilirubin led to treatment interruption.

Table 9. ASSURE: Liver-Related AEs in Legacy Study Participants With Cirrhosis⁸

AE, n (%)	Participants With Cirrhosis (n=35)
Liver-related AEs	8 (22.9)
Blood bilirubin increased	3 (8.6)
Ascites	2 (5.7)
ALT increased	2 (5.7)
AST increased	2 (5.7)
Anorectal varices	1 (2.8)
GGT increased	1 (2.8)
Hepatic cyst	1 (2.8)
Hepatic lesion	1 (2.8)
Hepatorenal syndrome	1 (2.8)
Ocular icterus	1 (2.8)
Varices esophageal	1 (2.8)
Portal hypertensive colopathy	1 (2.8)

Interim analysis of LSM trends through Year 3

An interim analysis evaluated trends in LSMs through 3 years of treatment with SEL 10 mg and included all participants (N=311) who had \geq 1 post-BL LSM assessment (assessed via transient elastography using FibroScan; assessed locally every 12 months). Results were assessed in subgroups established post hoc using three LSM categories, which were based on established diagnostic thresholds for PBC: <10.7 kPa (F0–F2); \geq 10.7 and <16.9 kPa (F3); and \geq 16.9 kPa (F4). \leq

Table 10. ASSURE: BL Demographics and Disease Characteristics in Overall LSM Study Population and by BL LSM Subgroup⁹

Key Demographics and Characteristics	Total (N=311)	LSM <10.7 kPa (n=227)	LSM ≥10.7 and <16.9 kPa (n=51)	LSM ≥16.9 kPa (n=33)
Age at enrollment, mean ± SD, years	58±9.6	58±9.3	58±11.7	60±8.1
Female, n (%)	294 (95)	217 (96)	50 (98)	27 (82)
LSM, median (IQR), kPa	7.5 (5.9–11.1)	6.6 (5.5-8)	12.6 (11.6–13.6)	21.1 (18.9–28.4)
ELF, mean ± SD	10±1.03	9.7±0.85	10.7±0.86	11±1.19
Cirrhosis at BL, n (%)	49 (16)	9 (4)	14 (27)	26 (79)
Child-Pugh class, ^a A/B, n (%)	46 (94)/3 (6)	9 (100)/0	14 (100)/0	23 (88)/3 (12)

Abbreviation: ELF=Enhanced Liver Fibrosis.

Liver fibrosis results9

Through up to 36 months of treatment, LSMs were stable over time in the overall LSM study population: median change from BL, -0.2 kPa; median percent change from BL, -2.9%. LSMs tended to improve in the subgroup of participants with the highest BL LSMs (≥16.9 kPa; Figure 11).

^aData are from participants with cirrhosis.

Gilead Sciences, Inc. is providing this document to you, a US Healthcare Professional, in response to your unsolicited request for medical information.

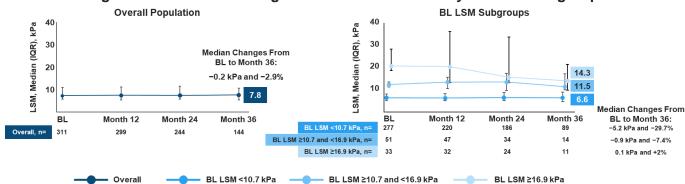


Figure 11. ASSURE: Changes in LSMs Overall and by BL LSM Subgroup⁹

Most participants (85%; 97/114) who had LSM assessments available at BL and Month 36 remained in the same category or had an improvement in category; most participants in the highest LSM category BL experienced improvement (Table 11).

Table 11. ASSURE: Shifts in LSM Categories at Month 36 Relative to BL LSM Categories⁹

LSM Category at BL	Category at Month 36, n/N (%)				
	<10.7 kPa	≥10.7 and <16.9 kPa	≥16.9 kPa		
<10.7 kPa (n=89)	76/89 (85)	11/89 (12)	2/89 (2)		
≥10.7 and <16.9 kPa (n=14)	5/14 (36)	5/14 (36)	4/14 (29)		
≥16.9 kPa (n=11)	3/11 (27)	4/11 (36)	4/11 (36)		

Note: Bolded text denotes stable or improved LSM category.

Of the 25 participants who had >30% worsening in LSMs from BL to Month 36, 1 participant was from the highest BL LSM subgroup (≥16.9 kPa), whereas 20 (80%) were from the lowest BL LSM category (<10.7 kPa), and 10 of them remained in the lowest category at Month 36. Conversely, of the 19 participants who had >30% improvement in LSMs from BL to Month 36, 5 were from the highest BL LSM subgroup; 2 of these participants improved to the mid-range LSM subgroup (≥10.7 to <16.9 kPa), and 3 improved to the lowest LSM subgroup (<10.7 kPa) at Month 36.

Being younger at the initiation of SEL (P=0.0275) and having a higher ALP level at BL (P=0.0122) were significantly associated with a worsening of LSMs by >30% from BL at Month 36, whereas the presence of cirrhosis at BL was not associated with a worsening of LSMs by >30% from BL to Month 36.

Safety⁷

There was no increase in the frequency of exposure-adjusted TEAEs over the course of the study in participants from the RESPONSE study and several legacy studies (N=337; Table 12). No treatment-related SAEs were reported. One participant died due to autoimmune hemolytic anemia, and the cause was deemed unrelated to SEL.

Rates of liver-, muscle-, and renal-related AEs were stable or decreased over the study period, and most were Grade 1 or 2 in severity (Table 12).

Table 12. ASSURE: Safety Overview⁷

Participants With Exposure-Adjusted TEAEs Per 100 PY		SEL 10 mg				
		Overall (N=337); Exposure: 575.7 Years	Month 12 (N=337); Exposure: 313.7 Years	Month 24 (N=280); Exposure: 214.4 Years	Month 36 (N=124) Exposure: 47.6 Years	
≥1 TEAE		50.2	85.8	70	63	
Grade ≥3 TEAEs		8.3	9.6	8.4	8.4	
TEAEs that led to study drug discontinuation		2.4	2.2	3.3	0	
TEAEs that led to study discontinuation		1.6	1.6	1.9	0	
TEAEs that led to death		0.2	0	0.5	0	
SAEs		6.9	7.7	6.5	6.3	
Most common TEAEs (≥3 participants per 100 PY)	COVID-19	11.5	16.3	7	10.5	
	Pruritus	6.8	7.3	7.5	4.2	
	Nausea	5.2	7	3.3	2.1	
	Fatigue	4.9	4.8	6.1	0	
	Urinary tract infection	4.7	5.1	5.1	6.3	
	Diarrhea	4.5	7	2.3	0	
	Headache	4.5	7	2.3	0	
	Arthralgia	4	5.1	4.2	0	
	Nasopharyngitis	4	5.4	3.7	2.1	
	Abdominal pain upper	3.6	4.1	3.3	2.1	
	Abdominal pain	3.5	3.8	3.3	2.1	
≥1 liver-related TEAE		5	5.7	5.1	2.1	
≥1 muscle-related TEAE		4.3	5.4	3.7	0	
≥1 renal-related TEAE		0.2	0.3	0	0	

Abbreviation: PY=patient-year(s).

Ongoing Studies Evaluating the Safety and Efficacy of SEL for PBC in Participants With Cirrhosis

AFFIRM Trial: Double-Blind, 36-Month, Phase 3 Study in Participants With Compensated Cirrhosis¹²

The randomized, double-blind, placebo-controlled AFFIRM study (NCT06051617) is evaluating the clinical effects of SEL in participants with PBC and compensated cirrhosis. Eligible participants who are aged 18 to 75 years, have a Child-Pugh score of A or B, have evidence of cirrhosis, and have no history of liver transplantation or active listing for transplant will be assigned to receive SEL (10 mg for Child-Pugh A or 5 mg for Child-Pugh B) or placebo for up to 36 months. The primary outcome measure is event-free survival through Month 36, defined as the time from treatment start to the first of any of the following events: death from any cause, liver transplantation, MELD score ≥15, ascites requiring intervention, or hospitalization for esophageal or stomach varices. The study began in September 2023, is estimated to be completed in July 2029, and has an anticipated enrollment of 192 participants.

References

- Enclosed. LIVDELZI[®] (seladelpar) capsules, for oral use. US Prescribing Information. Foster City, CA..
- 2. Hirschfield GM, Bowlus CL, Mayo MJ, et al. A Phase 3 Trial of Seladelpar in Primary Biliary Cholangitis. *N Engl J Med.* 2024;390(9):783-794.
- 3. Hirschfield GM, Bowlus CL, Mayo MJ, et al. A Phase 3 Trial of Seladelpar in Primary Biliary Cholangitis.[Supplementary Appendix]. *N Engl J Med.* 2024;390(9):783-794.
- 4. Villamil A, Younes Z, Bowlus CL, et al. Efficacy and Safety of Seladelpar in Patients With Primary Biliary Cholangitis and Compensated Cirrhosis in the Phase 3 Placebo-Controlled RESPONSE Trial [Presentation 164]. Paper presented at: The Liver Meeting, American Association for the Study of Liver Diseases; 15-19 November, 2024; San Diego, CA.
- 5. Gordon SC, Trivedi P, Bowlus C, et al. Efficacy, Safety, and Tolerability of Seladelpar in Patients With Compensated Liver Cirrhosis Due to Primary Biliary Cholangitis (PBC): A Pooled Analysis of Phase 2 and Phase 3 Studies. [Poster Su1348]. Paper presented at: Digestive Disease Week(DDW); May 21-24, 2022; San Diego, CA in person & Virtual.
- 6. Levy C, Odin JA, Neff G, et al. Efficacy and Safety of Seladelpar in Patients With Compensated Cirrhosis and Evidence of Portal Hypertension Due to Primary Biliary Cholangitis (PBC). [Poster 1269]. Paper presented at: AASLD The Liver Meeting; Nov 12-15, 2021; Virtual Meeting.
- 7. Lawitz EJ, Trivedi PJ, Kowdley KV, et al. Long-Term Efficacy and Safety of Open-Label Seladelpar Treatment in Patients With Primary Biliary Cholangitis: Pooled Interim Results for up to 3 Years From the ASSURE Study. [Poster #5044]. Paper presented at: The Liver Meeting:American Association for the Study of Liver Diseases; November 15–19, 2024; San Diego, CA.
- 8. Gordon S, Jacobson I, Younes Z, et al. Efficacy and Safety of Seladelpar in Patients With Primary Biliary Cholangitis and Compensated Liver Cirrhosis in the Open-Label, Long-Term ASSURE Safety Study: Interim Results.[Presentation]. Paper presented at: EASL Congress; Jun 5-8, 2024; Milan, Italy.
- 9. Bowlus CL, Hirschfield GM, Villamil AM, et al. 36 Months of Treatment With Seladelpar Is Associated With Stable or Improved Liver Stiffness in Patients With Primary Biliary Cholangitis. [Poster #5031]. Paper presented at: The Liver Meeting, American Association for the Study of Liver Diseases; November 7–11, 2025; Washington, DC.
- 10. Bowlus CL, Galambos MR, Aspinall RJ, et al. A phase II, randomized, open-label, 52-week study of seladelpar in patients with primary biliary cholangitis. *J Hepatol.* 2022;77(2):353-364.
- 11. Hirschfield GM, Shiffman ML, Gulamhusein A, et al. Seladelpar efficacy and safety at 3 months in patients with primary biliary cholangitis: ENHANCE, a phase 3, randomized, placebo-controlled study. *Hepatology.* 2023;78(2):397-415.
- 12. ClinicalTrials.gov. Seladelpar in Subjects With Primary Biliary Cholangitis (PBC) and Compensated Cirrhosis (AFFIRM). Available at: https://clinicaltrials.gov/study/NCT06051617?term=NCT06051617&rank=1.

Abbreviations

AE=adverse event
ALP=alkaline phosphatase
AMA=antimitochondrial
antibody
AUC=area under the
concentration-time curve
BL=baseline
C_{max}=peak plasma
concentration
CTCAE=Common

Terminology Criteria for Adverse Events DB=direct bilirubin GGT=γ-glutamyltransferase LSM=liver stiffness measurement MELD=Model for End-Stage Liver Disease NRS=numeric rating scale PBC=primary biliary cholangitis PHT=portal hypertension
SAE=serious adverse event
SEL=seladelpar
TB=total bilirubin
TEAE=treatment-emergent
adverse event
TRAE=treatment-related
adverse event
UDCA=ursodeoxycholic
acid
ULN=upper limit of normal

Product Label

For the full indication, important safety information, and boxed warning(s), please refer to the Livdelzi US Prescribing Information available at: www.gilead.com/-/media/files/pdfs/medicines/pbc/livdelzi/livdelzi pi.

Follow-Up

For any additional questions, please contact Gilead Medical Information at:

Adverse Event Reporting

Please report all adverse events to:

Gilead Global Patient Safety 1-800-445-3235, option 3 or www.gilead.com/utility/contact/report-an-adverse-event

FDA MedWatch Program by 1-800-FDA-1088 or MedWatch, FDA, 5600 Fishers Ln, Rockville, MD 20852 or www.accessdata.fda.gov/scripts/medwatch

Data Privacy

The Medical Information service at Gilead Sciences may collect, store, and use your personal information to provide a response to your medical request. We may share your information with other Gilead Sciences colleagues to ensure that your request is addressed appropriately. If you report an adverse event or concern about the quality of a Gilead or Kite product, we will need to use the information you have given us in order to meet our regulatory requirements in relation to the safety of our medicines.

It may be necessary for us to share your information with Gilead's affiliates, business partners, service providers, and regulatory authorities located in countries besides your own. Gilead Sciences has implemented measures to protect the personal information you provide. Please see the Gilead Privacy Statement (www.gilead.com/privacy-statements) for more information about how Gilead handles your personal information and your rights. If you have any further questions about the use of your personal information, please contact privacy@gilead.com.

LIVDELZI, GILEAD, and the GILEAD logo are registered trademarks of Gilead Sciences, Inc., or its related companies.

© 2026 Gilead Sciences, Inc.