DRUG INTERACTIONS WITH ONCE-DAILY B/F/TAF IN COMBINATION WITH ONCE-WEEKLY RIFAPENTINE

Priyanka Arora, PhD
Gilead Sciences, Inc
Foster City, CA, USA

Disclosure: Presenting author Priyanka Arora is an employee of Gilead Sciences, Inc and holds stock in the company
Introduction and Objective

♦ Bictegravir, emtricitabine, tenofovir alafenamide (B/F/TAF) is a guidelines-recommended first-line, single-tablet once daily treatment for PWH¹-³

♦ Among people with LTBI, PWH are ~20 times more likely to develop active TB compared to people without HIV⁴
 – Standard of care includes cotreatment of LTBI and HIV concomitantly
 – Guidelines-recommended LTBI treatments include once weekly rifapentine (RPT) + isoniazid

♦ BIC is metabolized by UGT1A1 and CYP3A

♦ TAF is a substrate of P-gp, BCRP and OATP

♦ RPT is a strong inducer of CYP3A but with induction potency less than that of rifampin, its inductive effect on P-gp is currently unknown

♦ Objectives:
 – Evaluate the effect of once-weekly RPT administration on B/F/TAF and TFV (TAF major metabolite) plasma PK and TFV-DP (TAF/TFV active metabolite) PK in PBMCs
 – Assess the safety and tolerability of multiple-dose B/F/TAF administered with once weekly RPT

B, BIC, bictegravir; BCRP, breast cancer resistance protein; CYP3A, cytochrome P450 3A; F, FTC, emtricitabine; LTBI, latent TB infection; OATP, organic anion-transporting polypeptide; PBMC, peripheral blood mononuclear cells; P-gp, p-glycoprotein; PWH, people living with HIV; RPT, rifapentine; TAF, tenofovir alafenamide; TB, tuberculosis; TFV, tenofovir; TFV-DP, TFV-diphosphate; UGT1A1, uridine diphospho-glucuronosyltransferase family 1A1.

A Phase 1, open-label, 3-period fixed sequence, multiple-dose, single-center study was conducted in 30 HIV-negative healthy volunteers.

An even distribution (1:1) of healthy male and nonpregnant, nonlactating female participants aged 18–45 y were enrolled in the study.

PK in plasma and PBMC was assessed at pre-specified timepoints.

PK parameters were estimated by noncompartmental methods using WinNonlin v8.2.

Statistical analysis:
- GLSM ratios and corresponding 90% CIs were used for statistical comparisons of exposures
- Test: B/F/TAF qd coadministered with RPT qwk or administered 12 h after RPT; reference: B/F/TAF qd alone

*Certara USA, Inc., Princeton, NJ. CI, confidence intervals; GLSM, geometric least-squares mean; qd, once daily; qwk, once weekly.
Results: BIC PK

BIC Plasma PK Following B/F/TAF qd Alone vs Coadministered With or Administered 12-h After RPT qwk

PK Parameter Mean (%CV)	B/F/TAF qd n=29	B/F/TAF qd + RPT qwk codosed n=29	B/F/TAF qd + RPT qwk 12-h stagger n=28	%GLSM (90% CI)	Codosed vs alone	12-h stagger vs alone
C\(_{\text{max}}\), ng/mL | 6870 (16.3) | 6880 (16.9) | 6590 (16.6) | 100 (95.5, 105) | 96.0 (91.8, 100) |
AUC\(_{\text{tau}}\), h·ng/mL | 96100 (23.3) | 81400 (17.9) | 70800 (18.3) | 85.5 (81.3, 89.8) | 74.1 (70.2, 78.3) |
C\(_{\text{tau}}\), ng/mL | 2510 (28.1) | 1520 (26.6) | 1080 (27.2) | 60.4 (56.3, 64.7)* | 42.5 (39.1, 46.2)* |
Median T\(_1/2\), h (Q1, Q3) | 20.7 (18.5, 22.3) | 10.3 (9.71, 11.2) | 8.82 (8.07, 9.23) |

*Outside no-effect drug-drug interaction boundaries; †Relative to date of first study drug administration (Day 1). AUC\(_{\text{tau}}\), area under plasma concentration-time curve over dosing interval; C\(_{\text{max}}\), maximal concentration; C\(_{\text{tau}}\), trough concentration; CV, coefficient of variation; paEC\(_{95}\), protein-adjusted 95% effective concentration; SD, standard deviation.

Key findings:
- BIC C\(_{\text{tau}}\) reduced by as low as 83% by Day 4 post RPT dosing (nadir)
- BIC C\(_{\text{tau}}\) never recovered back to steady state concentrations between RPT doses
- 12-hr staggered (vs coadministration) of RPT qwk resulted in more pronounced decline in BIC C\(_{\text{tau}}\)

Geometric Mean BIC C\(_{\text{tau}}\), ng/mL (SD)
Results: PK of Other Analytes

Summary of PK Parameter Estimates Across Study Treatments

<table>
<thead>
<tr>
<th>Plasma FTC</th>
<th>Plasma TAF</th>
<th>Plasma TFV</th>
<th>Plasma TFV-DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max}</td>
<td>C_{max}</td>
<td>C_{max}</td>
<td>C_{max}</td>
</tr>
<tr>
<td>AUC_{tau}</td>
<td>AUC_{tau}</td>
<td>AUC_{tau}</td>
<td>AUC_{tau}</td>
</tr>
<tr>
<td>C_{tau}</td>
<td>C_{tau}</td>
<td>C_{tau}</td>
<td>C_{tau}</td>
</tr>
</tbody>
</table>

♦ Coadministration of RPT qwk did not significantly affect the PK of FTC, TAF, TFV or TFV-DP

Circles and bars indicate % GLSM ratio and 90% CIs, respectively. Shaded area indicates default no-effect boundary of 70–143%.
Conclusions

♦ All study treatments were safe and well tolerated

♦ BIC C_{tau} was ~35–83% lower following administration of B/F/TAF qd + RPT qwk, indicating a significant impact of RPT on BIC PK due to potent induction of CYP3A4

♦ After accounting for ~83% reduction in BIC C_{tau} at the nadir, trough levels are predicted to fall below the paEC$_{95}$ (inhibitory quotient of 1) in some patients if daily B/F/TAF is administered with weekly RPT

♦ No clinically significant changes in the PK of FTC, TAF, TFV, and TFV-DP were observed with coadministration of weekly RPT

♦ Based on the substantial reduction in BIC C_{tau}, use of single tablet regimen B/F/TAF with weekly RPT is not recommended

Coauthors:
Sean E. Collins, Hal Martin, Xu Zhang, Lily Mak, John Ling, Polina German

We extend our thanks to the participants, their families and all participating study investigators and staff. This study was funded by Gilead Sciences, Inc.